Short-term forecasting of air passenger by using hybrid seasonal decomposition and least squares support vector regression approaches
نویسندگان
چکیده
In this study, two hybrid approaches based on seasonal decomposition and least squares support vector regression (LSSVR) model are proposed for short-term forecasting of air passenger. In the formulation of the proposed hybrid approaches, the air passenger time series is first decomposed into three components: trend-cycle component, seasonal factor and irregular component. Then the LSSVR model is used to predict the components independently and these prediction results of the components are combined as an aggregated output. Empirical analysis shows that the proposed hybrid approaches are better than other time series models, indicating that they are promising tools to predict complex time series with high volatility and irregularity. 2014 Elsevier Ltd. All rights reserved.
منابع مشابه
Air passenger forecasting by using a hybrid seasonal decomposition and least squares support vector regression approach
In this study, a hybrid approach based on seasonal decomposition (SD) and least squares support vector regression (LSSVR) model is proposed for air passenger forecasting. In the formulation of the proposed hybrid approach, the air passenger time series are first decomposed into three components: trend-cycle component, seasonal factor and irregular component. Then the LSSVR model is used to pred...
متن کاملShort Term Load Forecasting Using Empirical Mode Decomposition, Wavelet Transform and Support Vector Regression
The Short-term forecasting of electric load plays an important role in designing and operation of power systems. Due to the nature of the short-term electric load time series (nonlinear, non-constant, and non-seasonal), accurate prediction of the load is very challenging. In this article, a method for short-term daily and hourly load forecasting is proposed. In this method, in the first step, t...
متن کاملHybrid approaches based on LSSVR model for container throughput forecasting: A comparative study
In this study, three hybrid approaches based on least squares support vector regression (LSSVR) model for container throughput forecasting at ports are proposed. The proposed hybrid approaches are compared empirically with each other and with other benchmark methods in terms of measurement criteria on the forecasting performance. The results suggest that the proposed hybrid approaches can achie...
متن کاملA Short-Term Load Forecasting Model with a Modified Particle Swarm Optimization Algorithm and Least Squares Support Vector Machine Based on the Denoising Method of Empirical Mode Decomposition and Grey Relational Analysis
As an important part of power system planning and the basis of economic operation of power systems, the main work of power load forecasting is to predict the time distribution and spatial distribution of future power loads. The accuracy of load forecasting will directly influence the reliability of the power system. In this paper, a novel short-term Empirical Mode Decomposition-Grey Relational ...
متن کاملA Hybrid Approach for Short-Term Forecasting of Wind Speed
We propose a hybrid method for forecasting the wind speed. The wind speed data is first decomposed into intrinsic mode functions (IMFs) with empirical mode decomposition. Based on the partial autocorrelation factor of the individual IMFs, adaptive methods are then employed for the prediction of IMFs. Least squares-support vector machines are employed for IMFs with weak correlation factor, and a...
متن کامل